
PETSY: Polymorphic Enumerative 
Type-Guided Synthesis

Darya Verzhbinsky, Daniel Wang
Jan 19, 2021

1



Consider the following function description… 

2

concatNTimes:   concatenates a list xs to itself n times

● In Haskell, this function can be implemented concisely and idiomatically 
without explicit recursion 

○ Already existing recursive function synthesis tools for Haskell won’t do

● Would be great it we a tool could “synthesize” this for us!

ex. concatNTimes "abc" 2 = "abcabc"



Challenges with synthesizing Haskell

3

● Many Haskell library functions make heavy use of:

○ polymorphism

○ higher-order arguments

○ typeclasses

● This makes search space quite complex

● Advanced features of the Haskell type system make the problem difficult



Synthesis problem overview

4

Search
Algorithm

Resulting 
ProgramValidate 

Program

enumerate programs

\xs n → 

concat (replicate n xs) 

drop failed programs

Prior work: 
TYGAR

Our Work:
PETSY

* Guo et. al, POPL ‘20Type Query

Components

Examples
(optional)

[a] → Int → [a]

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

(+ more)

concatNTimes “abc” 2 
= “abcabc”



TYGAR vs. PETSY 

5

Our Work:
PETSY

Prior work: 
TYGAR

● Synthesis via Petri net reachability
● Cannot synthesize programs with inner lambdas

○ e.g. \xs -> map (\p → fst p + snd p) xs

● Efficient but complex algorithm

● Top-down enumerative search
● Can synthesize programs with inner lambdas
● Simpler algorithm: can it compete?



Enumeration

Memoization

6

Evaluation

● Challenge: polymorphism



Enumeration

7

?? :: [a] → Int → [a]
concat :: [[ɑ]] → [ɑ] 

replicate :: Int → ɑ → [ɑ]

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

Steps:

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



Enumeration

8

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

Steps:

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 

\xs → ?? :: Int → [a]



xs

Enumeration

9

?? :: [a]

Steps:

Doesn’t 

match 

examples!

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

\xs n → 

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



Enumeration

10

Steps:

?? :: [a]
concat :: [[ɑ]] → [ɑ] 

replicate :: Int → ɑ → [ɑ]
xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

\xs n → 

?? :: 𝛂1→[a]( )

3. Not a function type ⇒ function 
application, recurse on 2 subgoals

)?? :: 𝛂1
(

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



?? :: 𝛂1

Enumeration

11

Steps:

?? :: [a]

?? :: 𝛂1→[a]

concat

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

\xs n → 

( )( )

3. Not a function type ⇒ function 
application, recurse on 2 subgoals

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



?? :: 𝛂1

Enumeration

12

Steps:

?? :: [a]

?? :: [[ɑ]]→[a]

concat

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

\xs n → 

( )( )

3. Not a function type ⇒ function 
application, recurse on 2 subgoals

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



Enumeration

13

Steps:

?? :: [a]

?? :: [[ɑ]]→[a]

concat

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

\xs n → 

( )( )?? :: [[ɑ]]

3. Not a function type ⇒ function 
application, recurse on 2 subgoals

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



Enumeration

14

Steps:

?? :: [a]

?? :: [[ɑ]]→[a] ?? :: [[ɑ]]

concat

replicate n xs

...

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

\xs n → 

( )( )

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



Enumeration

15

Steps:

concat replicate n xs

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

?? :: [a]\xs n → 

( )( )

3. Not a function type ⇒ function 
application, recurse on 2 subgoals

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



Enumeration

16

Steps:

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples

?? :: [a]

concat (replicate n xs)

\xs n → 

3. Not a function type ⇒ function 
application, recurse on 2 subgoals

4. Return :) 

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



Enumeration

17

Steps:

concat :: [[ɑ]] → [ɑ] 
replicate :: Int → ɑ → [ɑ]

xs :: [a]
n :: Int

Components

concatNTimes “abc” 2 
= “abcabc”

Examples
\xs n → concat (replicate n xs)

3. Not a function type ⇒ function 
application, recurse on 2 subgoals

4. Return :) 

1. Component with matching type?
2. Is it a function type? Yes ⇒ 

create lambda 



Making search feasible

18

~140 programs at size 1



Making search feasible

19

~140 programs at size 1

~19,600 programs at size 2



Making search feasible

20

~140 programs at size 1

~19,600 programs at size 2

~2,744,000 programs at size 3



Making search feasible

21

~140 programs at size 1

~19,600 programs at size 2

~2,744,000 programs at size 3

EXPLOSION !



Enumeration

Memoization

22

Evaluation

● Making enumeration scale



Memoization - Prior Work

● Myth (Osera et. al, PLDI ‘15) showed memoization is crucial for fast 
enumerative synthesis

● However, their memoization technique only worked in monomorphic situations

23



Memoization - complications with Polymorphism

24

map length :: [[t21]] → [Int]

?? :: 𝛂1 → [Int]?? :: t21 

...



25

map length :: [[t21]] → [Int]

Working solution: we ignore the stored type and infer the type at retrieval

?? :: 𝛂1 → [Int]?? :: t21 

...

Memoization - complications with Polymorphism



Enumeration

Memoization

26

Evaluation



Benchmarking PETSY

27

Tested against 
TYGAR

140 
Components

39 Benchmarks 
(from TYGAR1)



Evaluation - TYGAR vs PETSY

28



Evaluation - TYGAR vs PETSY

29



Evaluation - TYGAR vs PETSY

30



Evaluation - TYGAR vs PETSY

31



Evaluation - TYGAR vs PETSY

32



Evaluation - PETSY memoization

33



Evaluation - PETSY memoization

34



Evaluation - PETSY memoization

35



Thank you!

36


